Monday, 5 January 2015

DIFFERENCE BETWEEN MOTOR AND ENGINES

An internal combustion engine (ICE) is an engine where the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine the expansion of the high-temperature and high-pressure gases produced by combustion apply direct force to some component of the engine. The force is applied typically to pistons, turbine blades, or a nozzle. This force moves the component over a distance, transforming chemical energy into useful mechanical energy. The first commercially successful internal combustion engine was created by Étienne Lenoir around 1859.[1]
The term internal combustion engine usually refers to an engine in which combustion is intermittent, such as the more familiar four-stroke and two-stroke piston engines, along with variants, such as the six-stroke piston engine and the Wankel rotary engine. A second class of internal combustion engines use continuous combustion: gas turbines, jet engines and most rocket engines, each of which are internal combustion engines on the same principle as previously described.[1][2] Firearms are also a form of internal combustion engine.[2]
Internal combustion engines are quite different from external combustion engines, such as steam or Stirling engines, in which the energy is delivered to a working fluid not consisting of, mixed with, or contaminated by combustion products. Working fluids can be air, hot water, pressurized water or even liquid sodium, heated in a boiler. ICEs are usually powered by energy-dense fuels such as gasoline or diesel, liquids derived from fossil fuels. While there are many stationary applications, most ICEs are used in mobile applications and are the dominant power supply for cars, aircraft, and boats.
Typically an ICE is fed with fossil fuels like natural gas or petroleum products such as gasoline, diesel fuel or fuel oil. There's a growing usage of renewable fuels like biodiesel for compression ignition engines and bioethanol for spark ignition engines. Hydrogen is sometimes used, and can be made from either fossil fuels or renewable energy.

Contents

  • 1 History
  • 2 Etymology
  • 3 Applications
  • 4 Engine configurations
  • 5 Reciprocating engines
    • 5.1 Structure
    • 5.2 4-stroke engines
    • 5.3 2-stroke engines
    • 5.4 Ignition
    • 5.5 LuHave you ever opened the hood of your car and wondered what was going on in there? A car engine can look like a big confusing jumble of metal, tubes and wires to the uninitiated.You might want to know what's going on simply out of curiosity. Or perhaps you are buying a new car, and you hear things like "3.0 liter V-6" and "dual overhead cams" and "tuned port fuel injection." What does all ­of that mean?
      ­­In this article, we'll discuss the basic idea behind an engine a­nd then go into detail about how all the pieces fit together, what can go wrong and how to increase performance.
      ­The purpose of a gasoline car engine is to convert gasoline into motion so that your car can move. Currently the easiest way to create motion from gasoline is to burn the gasoline inside an engine. Therefore, a car engine is an internal combustion engine -- combustion takes place internally.

      Basic Engine Parts

      The core of the engine is the cylinder, with the piston moving up and down inside the cylinder. The engine described above has one cylinder. That is typical of most lawn mowers, but most cars have more than one cylinder (four, six and eight cylinders are common). In a multi-cylinder engine, the cylinders usually are arranged in one of three ways: inline, V or flat (also known as horizontally opposed or boxer), as shown in the following figures.
      Different configurations have different advantages and disadvantages in terms of smoothness, manufacturing cost and shape characteristics. These advantages and disadvantages make them more suitable for certain vehicles.

      Figure 3. V - The cylinders are arranged in two banks set at an angle to one another.

      Figure 4. Flat - The cylinders are arranged in two banks on opposite sides of the engine.
      Let's look at some key engine parts in more detail.
      Spark plugThe spark plug supplies the spark that ignites the air/fuel
    • You are out of gas, so the engine is getting air but no fuel.
    • The air intake might be clogged, so there is fuel but not enough air.
    • The fuel system might be supplying too much or too little fuel to the mix, meaning that combustion does not occur properly.
    • There might be an impurity in the fuel (like water in your gas tank) that makes the fuel not burn.
    Lack of compression - If the charge of air and fuel cannot be compressed properly, the combustion process will not work like it should. Lack of compression might occur for these reasons:
  • Your piston rings are worn (allowing air/fuel to leak past the piston during compression).
  • The intake or exhaust valves are not sealing properly, again allowing a leak during compression.
  • There is a hole in the cylinder.
The most common "hole" in a cylinder occurs where the top of the cylinder (holding the valves and spark plug and also known as the cylinder head) attaches to the cylinder itself. Generally, the cylinder and the cylinder head bolt together with a thin gasket pressed between them to ensure a good seal. If the gasket breaks down, small holes develop between the cylinder and the cylinder head, and these holes cause leaks.
Lack of spark - The spark might be nonexistent or weak for a number of reasons:
  • If your spark plug or the wire leading to it is worn out, the spark will be weak.
  • If the wire is cut or missing, or if the system that sends a spark down the wire is not working properly, there will be no spark.
  • If the spark occurs either too early or too late in the cycle (i.e. if the ignition timing is off), the fuel will not ignite at the right time, and this can cause all sorts of problems.
Many
  • If the bearings that allow the crankshaft to turn freely are worn out, the crankshaft cannot turn so the engine cannot run.
  • If the valves do not open and close at the right time or at all, air cannot get in and exhaust cannot get out, so the engine cannot run.
  • If someone sticks a potato up your tailpipe, exhaust cannot exit the cylinder so the engine will not run.
  • If you run out of oil, the piston cannot move up and down freely in the cylinder, and the engine will seize.

0 comments:

Post a Comment